# ELECTRIFICATION OF MEDIUM SIZE TRACKED VEHICLE – HYDRAULIC VS ELECTRIC DESIGN AND INTEGRATION

Jim Aardema<sup>1</sup>, Thomas Laboda<sup>2</sup>

<sup>1</sup>Waltonen - Engineering, Warren, MI <sup>2</sup>Waltonen – Business Development, Warren, MI

### ABSTRACT

For medium sized combat vehicles, the traditional method for auxiliary power is hydraulics, based on proven track record of reliability, high output forces and excellent power density. With the transition to vehicle electrification, emphasis has been placed on the integration of electric motors into the overall architecture of the vehicle. Electric components generally are larger in size and weigh more for the amount of power they deliver compared to hydraulics. This paper will explore the integration of electric motors in a vehicle and the advantages and disadvantages as compared to hydraulic power.

#### **1 INTRODUCTION**

This paper compares hydraulic versus electric solutions for several functions on a medium size tracked vehicle. The key comparison factors are:

- Components required.
- Power density by volume. (kW/L)
- Power density by weight. (kW/kg)
- Efficiency and heat generation.
- Size of hydraulic lines and electric wires.

Power density factors are based on the component's rated power for its size. These factors have a large impact on component integration and vehicle weight, which significantly impacts transportability.

Out-of-scope factors include:

- Component cost.
- Development costs.

- Reliability.
- Maintainability/Serviceability.
- Noise.

• Drive train components such as engine, transmission and final drives.

Five main functions for comparison are:

- Turret.
- Ammo door.
- AC Compressor.
- Ventilation fan.
- Cooling fan.

#### **2.0 TURRET**

The main functions in the turret are gun azimuth and gun elevation.

Requirements:

- Azimuth:
- $40^{\circ}$  degrees per second<sup>1</sup> (6.67 RPM)

Estimated 40,000 Nm (29,500 ft-lbs.) 28 kW (37.5 hp) Elevation:  $-10^{\circ}$  to  $+20^{\circ 1}$ 25° degrees per second<sup>1</sup> Estimated 60,000 - 65,000 N (13,500 - 14,600 lbs.) 13.0 kW (17.4 hp)

Turret hydraulic components.

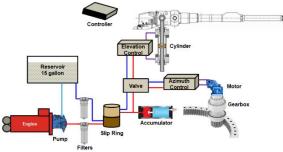



Figure 1: Gun Control – Hydraulic.

Azimuth control components:

- Hydraulic motor Axial, piston, bent axis, fixed displacement, motor.
- Azimuth control valve.

Elevation control components:

- Hydraulic cylinder double acting, double rod cylinder.
- Elevation control valve.

Shared hydraulic components:

- An axial piston variable pump with pressure compensated controls which provides a constant pressure to the system. This pump is also used to provide fluid to other turret and chassis functions, as described in other sections.
- Supply and return filters.
- A nitrogen charged, piston accumulator to store energy for rapid gun response.
- Turret valve to enable gun control and direct the fluid appropriately.
- A 15 gallon reservoir is required.

Also required, but assumed to be the same or equal for both solutions are:

- Azimuth slew ring gear and pinion gear.
- Azimuth gear reducer.
- Manual override.
- Slip ring to connect the fluid and electricity between the chassis and the turret.
- Gun control computer and sensors.

Turret electric components.

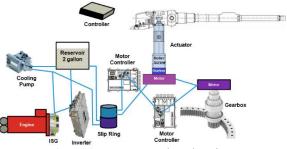



Figure 2: Gun Control – Electric.

Azimuth control components:

- Axial flux motor. (350 V)
- Motor controller.

Elevation control components:

- Roller screw actuator with a gearbox and motor.
- Motor controller.

Shared electric components:

- An Integrated Starter Generator (ISG). The generator is also used to provide power to other turret and chassis functions, as described in other sections.
- Inverter.
- An electric driven cooling pump to cool the ISG, inverter, both motor controllers and both motors.
- A 2 gallon cooling reservoir containing 50/50 water/glycol solution.

Details can be found in Appendix A.

#### **2.1 TURRET RESULTS**

Hydraulic pump and motor efficiency depends on speed, pressure and displacement, if variable. A pump and motor has a volumetric efficiency and a mechanical efficiency. For this analysis we assumed a volumetric efficiency of 95% and a mechanical efficiency of 95% for an overall efficiency of 90.3%.

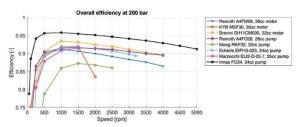
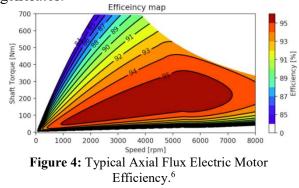




Figure 3: Typical Hydraulic Pump & Motor Efficiency.<sup>26</sup>

Electric motor efficiency depends on speed and torque. Different motor types will have different efficiency maps. For this analysis we used an overall efficiency of 95%. We assumed the same efficiency for the generator.



High power electric components need to be cooled. We assumed all the heat due to inefficiency goes to heat the fluid. For the hydraulic system, cooling will be done with a cooling fan circuit sharing the same reservoir. The electric system needs a pump to circulate the fluid to the components. With a common reservoir, a cooling pump will also be required to circulate cooling fluid through a radiator. For the turret system, a main difference in heat load is driven by the elevation actuator. With the hydraulic system the elevation actuator is a hydraulic cylinder with 98% efficiency. The only loss is due to friction at the piston and rod seals.



Figure 5: Elevation Actuators.<sup>17</sup>

The electric actuator consists of a roller screw actuator with an efficiency of 86%<sup>19</sup>, a gearbox at 98% efficiency and a motor at 95% efficiency for an overall efficiency of 80%. At a component level, electric cannot beat the efficiency of a hydraulic cylinder, but system efficiency is the real goal and the valves to control the flow to the cylinder will dominate the power loss and this will vary with the type of system and the load.

The power loss at the hydraulic valve is given by:


$$PW_{Loss} = \Delta P_{Valve} * Q \tag{1}$$

The pressure compensated pump maintains a constant system pressure. The load is always changing based on dynamic/inertial loads, applied loads and pressure losses through the lines and components. For the efficiency and heat load calculations, we assumed the load is one-half the system pressure and that the average pressure drop is the other half of system pressure. The flow also varies with operator's needs. Sometimes small quick motions are needed and other times more motion is needed. It would be very rare to be at max flow and max pressure drop for any length of time. For valve efficiency and heat load we assumed that the average flow is one-half the max system rated flow. For the electric components we

assumed the heat load was based on supplier's stated efficiency and the power going through the component. Recommend a detailed dynamic heat load analysis be performed with varying loads, usage times, etc.

For an equivalent load, the electric system is more efficient and generates less heat compared to the hydraulic system. The main driver of this poor hydraulic efficiency results from the pressure drop across the valves. An electric system requires lower cooling heat rejection, resulting in a smaller and lighter radiator.

Figure 6 shows the peak and rated torque for a typical hydraulic and electric motor. Beyond rated speed the electric motor loses torque. The hydraulic motor can maintain torque as long as the pump and engine can provide the needed pressure, flow and power. The electric motor has a very high (240%) peak torque over rated that can be sustained for several seconds. This is a key advantage over hydraulics. The electric motor can be sized for a lower nominal torque. The peak torque can be sized for transient conditions such as acceleration and deceleration. The hydraulic motor only has a 112.5% peak torque over rated so it must be sized for full dynamic loads, not nominal loads. See Appendix B for details.



Advancements in motor technology and high voltage components have reduced the

size and increased the power density of electrical components. However, at this time, for these turret functions, the hydraulic pump and motor are 1.2 to 2.9 times more power dense. Comparing the valves to the motor controllers, the sizes are nearly the same but the hydraulic valves are 5.5 to 6.7 times heavier.

The electric system requires a cooling pump but the hydraulic system has an accumulator.

The main hydraulic lines are -12 sized tubes and hoses for elevation and -16 size for azimuth. Hydraulic hose outside diameter (OD) and bend radius depend on the pressure rating and the supplier. Many suppliers now offer hoses with <sup>1</sup>/<sub>2</sub> the bend radius compared to the SAE standard. For these turret functions we used 3000 PSI hose with <sup>1</sup>/<sub>2</sub> SAE bend radius.

For these turret functions, wire is smaller in size and bend radius compared to hydraulic hose.

With hydraulics, for a given power, increasing the pressure will reduce the flow. But, increasing the pressure will also increase hose and tube thickness and weight. Figure 7 shows a comparison of hose OD (blue) and tube OD (green) at 3000 PSI and 6000 PSI and wire OD (red) versus power at 350 V and 480 V. Electric wire OD is about 50% smaller compared to hydraulic hose OD and 25% smaller than hydraulic tube OD.

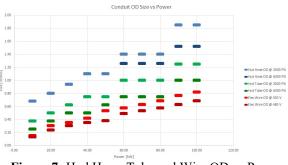



Figure 7: Hyd Hose, Tube and Wire OD vs Power.

For electric wiring we assumed a bend radius of 8 times the  $OD^{20}$ . For hydraulic hose, the bend radius is given by the supplier.

Hydraulic tube bend radius was assumed to be 2 times the OD. Figure 8 shows that the electric wire (green) bend radius is less than hydraulic hose (blue). Hydraulic tube (green) has the smallest bend radius.

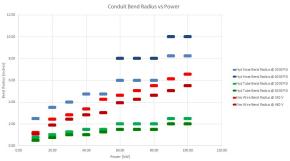
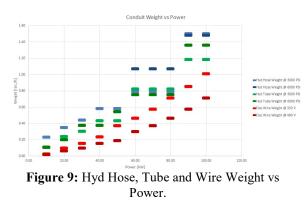




Figure 8: Hyd Hose, Tube and Wire Bend Radius vs Power.

Figure 9 shows that electric wire has the least weight for a given power. Assumption is that the connector and fitting size and weight will have similar results.



For electric turret control, a new slip ring needs to be developed. Existing slip ring transmits hydraulic flow and pressure, 24 volt electrical power, ground and numerous signals. A new slip ring is required with the hydraulics replaced by high voltage and high current electrics, and ability to transfer coolant.

Manual override needs to be developed.

| Turret Scorecard                             | <u>Hyd</u> | Elec      |
|----------------------------------------------|------------|-----------|
| Pump/Motor Power Density                     | +          | 0         |
| Valves vs Motor Controllers                  | 0          | +         |
| Efficiency / Heat Load                       | 0          | ++        |
| Hyd lines vs Elec wires                      | 0          | +         |
| <b>Kev:</b> o baseline, $=$ equal, $+$ bette | er. ++ mu  | ch better |

### 3.0 AMMO DOOR

The main function of the ammo door is to protect the crew from hits in the ammo compartment. To open the door, the loader pushes a knee switch. The door must open and close quickly. This analysis only focuses on the door actuator. Similar conclusions are assumed for the latching mechanism.

Requirements:

- Travel 610 mm 24<sup>,,2,3,4</sup>
- Travel Time  $0.8 \text{ s}^{2,3,4}$ 
  - Travel Speed 762.5 mm/s

(610 mm / 0.8 s)

• Force Estimated 5000 N (1124 lbs.)

Ammo door hydraulic components:

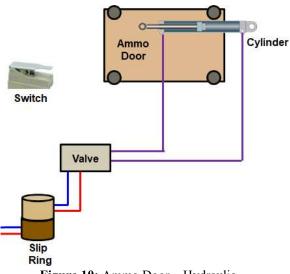
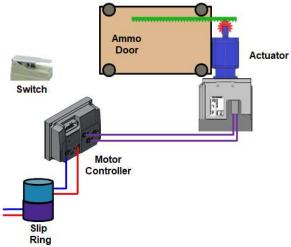
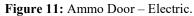



Figure 10: Ammo Door – Hydraulic.


- Hydraulic cylinder double acting, single rod cylinder.
- Ammo door valve.


Pressurized fluid comes from the Turret pump.

Also required, but assumed to be the same or equal for both solutions are:

- Slip ring to connect the fluid and electricity between the chassis and the turret.
- Knee switch.

Ammo door electric components:





- Rack and pinion actuator, with an in-line planetary gearbox driven by an Interior Permanent Magnet (IPM) electric motor. (24 V)
- Motor controller.

Details can be found in Appendix C.

### **3.1 AMMO DOOR RESULTS**

A rack-and-pinion device was selected because of its simplicity. Other mechanical and electrical solutions for actuating the ammo door are available. Power requirements would be similar for other solutions.

Hydraulic actuation has a 2.3 to 3.3 power density advantage in volume and weight. Electrical power density could be improved by using a higher voltage motor. A twentyfour volt (24 V) system was selected for this function because that is the standard vehicle voltage and an interesting comparison point. The hydraulic valve is simple and is 50% less volume but equal in weight to a motor controller. For this function, the hydraulic hose is similar in OD compared to wire but hydraulic hose has a smaller bend radius and weighs less per linear foot.

The electric motor selected is 24 volts and requires a significant amount of current at rated speed and torque. With a higher voltage motor, the electric wire would be smaller, more flexible and weigh less.

The power required to open and close the ammo door is small, the use is intermittent, and so this would not be a significant heat generator.

| Ammo Door Scorecard         | <u>Hyd</u> | Elec |
|-----------------------------|------------|------|
| Power Density               | +          | 0    |
| Valves vs Motor Controllers | +          | 0    |
| Efficiency / Heat Load      | =          | 0    |
| Hyd lines vs Elec wires     | +          | 0    |

Since this is only an ammo door, this function would not weigh heavily on choosing a technology solution.

#### 4.0 AC COMPRESSOR

The main function is to provide power to the Air Conditioning (AC) compressor.

Requirements:

- Speed Estimated 5000 RPM
- Torque Estimated 20 Nm
- Power 10.5 kW (14 hp)

Hydraulic components include:

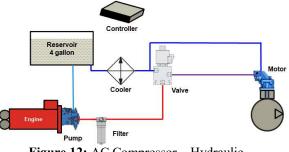



Figure 12: AC Compressor – Hydraulic.

- Axial piston variable pump with electro-hydraulic flow control to provide a desired flow to the motor.
- Filter.
- Unloading valve.
- Axial piston, bent axis, fixed displacement, motor. Pump and motor are in an open-circuit arrangement.

Shared hydraulic components:

- A cooler is required and will be combined with other cooling requirements into a single radiator.
- A 4 gallon reservoir is required and will be combined with other reservoir requirements into a single reservoir.
- Vehicle controller.

Electric components include:

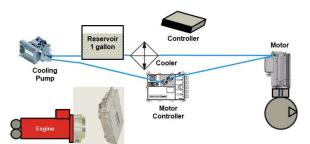



Figure 13: AC Compressor – Electric.

- Motor, Permanent Magnet (PMAC). (400 V)
- Motor controller.

Shared or combined electric components:

- Power will come from the ISG and inverter used for turret functions.
- A cooler is required and will be combined with other cooling requirements into a single radiator.
- An electric driven cooling pump to cool the motor controller and motor.
- A 1 gallon reservoir is required and will be combined with other

reservoir requirements into a single reservoir.

• Vehicle controller.

Details can be found in Appendix D.

### 4.1 AC COMPRESSOR RESULTS

Compared to an ISG, the hydraulic pump is 1.7 times more power dense by volume and 1.8 times more power dense by weight.

The electric motor selected for this function, with comparable speed and torque, is a Permanent Magnet (PMAC) motor. Table below compares a PMAC motor to an axial flux motor and a hydraulic motor. Power density is calculated as the supplier's rated continuous or nominal power per stated volume and dry weight. This gives a good comparison of the component's power density capabilities.

| Motor<br><u>Type</u><br>PMAC<br>Axial Flux<br>Hydraulic | Volume<br>Power<br>Density<br>[ <u>kW/L]</u><br>2.83<br>8.04<br>38.81 | Volume<br>Ratio<br>[-]<br>1.0<br>2.8<br>13.7 |
|---------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|
| Motor<br><u>Type</u><br>PMAC<br>Axial Flux<br>Hydraulic | Weight<br>Power<br>Density<br>[ <u>kW/kg]</u><br>1.04<br>2.38<br>4.94 | Weight<br>Ratio<br>[-]<br>1.0<br>2.3<br>4.8  |

An axial flux motor is more power dense than a PMAC, but an axial motor in this size could not be found. An available larger axial flux motor, with more torque and power than required, ended up being the same size as a PMAC motor. The hydraulic motor is 13.7 times more power dense by volume and 4.8 times more power dense by weight compared to the PMAC motor.

The combined hydraulic filter and valve size is 35% smaller than the motor controller and about equal in weight.

This hydraulic system is an open-circuit hystat arrangement. The unloading valve is only used to unload the pump while the system is not in use. While in use the valve has a small pressure drop. Likewise the pressure drop across the filter is small. The hydraulic system generates 1.5 X more heat than a comparable electric system. Power requirements for the system is not that significant relative to the overall vehicle power. Even though the electric system has 32% less heat generation, the difference between the two (0.81 kW) is not significant to the overall vehicle cooling system.

Hydraulics require -12 ( $\emptyset$ 3/4") lines which has a bend radius of 120 mm. Motor is high voltage. Wire, at nominal conditions, is 10 AWG with a size of approximately  $\emptyset$ 4.5 mm with a bend radius of 36 mm. This function adds 4 gallons to the hydraulic tank and 1 gallon capacity is required for electric cooling. Electric system requires an electric driven cooling pump. Cooling will be shared with a common radiator.

| AC Compressor Scorecard    | <u>Hyd</u> | Elec |
|----------------------------|------------|------|
| Power Density              | ++         | 0    |
| Valves vs Motor Controller | +          | 0    |
| Efficiency / Heat Load     | =          | 0    |
| Hyd lines vs Elec wires    | 0          | ++   |

#### **5.0 VENTILATION FAN**

One or more ventilation fans to provide cooled or heated air to the crew.

Requirements for a 1 kW fan:

- Power 1.0 kW (1.3 hp)
- Speed Estimated 5000 RPM
- Torque Estimated 1.91 Nm
- No gearbox.

Ventilation fan hydraulic components:

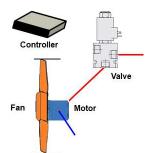



Figure 14: Ventilation Fan – Hydraulic.

- Hydraulic fixed displacement gear motor.
- Valve flow control.

Pressurized fluid comes from the pump used for turret functions.

Also required, but assumed to be the same or equal for both solutions are:

• Vehicle controller.

Ventilation fan electric components:

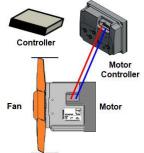



Figure 15: Ventilation Fan – Electric.

- Interior Permanent Magnet (IPM) electric motor. (24 V)
- Motor controller.

Details can be found in Appendix E.

### **5.1 VENTILATION FAN RESULTS**

Hydraulics showed a 16 to 11 power density advantage in volume and weight. The main factor driving power density is the electric motor at 24 volts. With a high voltage motor, significant size reduction can be realized. The valve is simple and is 28% less volume and 45% less weight than a motor controller.

The power required is small and is not a significant heat generator.

Hydraulic flow only requires a -6 ( $\emptyset$ 3/8")  $\emptyset$ 17 mm OD hose with a bend radius of 65 mm. The 24 V electric motor requires 8 AWG wire which has an outside diameter of  $\emptyset$ 6 mm with a bend radius of 48 mm.

| Ventilation Fan Scorecard   | <u>Hyd</u> | Elec |
|-----------------------------|------------|------|
| Power Density               | ++         | 0    |
| Valves vs Motor Controllers | +          | 0    |
| Efficiency / Heat Load      | =          | 0    |
| Hyd lines vs Elec wires     | 0          | ++   |

Since this is only a ventilation fan, this function would not weigh heavily on choosing a technology solution.

### 6.0 COOLING FAN

A vehicle cooling fan is required to cool fluid from the engine, transmission and the hydraulic or electric system.

Requirements for an 80 kW fan:

- Power Estimated 80 kW (107 hp)
- Speed Estimated 4200 RPM (Based on available electric motor)
- Torque Estimated 182 Nm
- No gearbox.

Cooling fan hydraulic components:

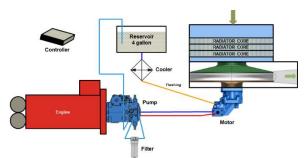



Figure 16: Cooling Fan – Hydraulic.

• Axial piston variable pump with electronic controls to provide a desired flow/pressure to the motor. A charge/cooling pump is integrated into the pump.

- Filter
- Axial piston, bent axis, fixed displacement, motor. Pump and motor are in a closed-circuit arrangement. Flushing valve is integrated into the motor.

Shared hydraulic components:

- A cooler is required and will be combined with other cooling requirements into a single radiator.
- A 4 gallon reservoir is required and will be combined with other reservoir requirements into a single reservoir.
- Vehicle controller

Cooling fan electric components:

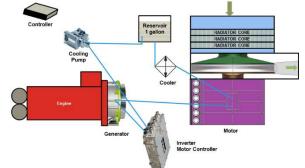



Figure 17: Cooling Fan – Electric.

- Axial flux motor. (480 V)
- Motor controller.
- A generator. For this analysis a second generator was selected. A second generator provides vehicle backup capability in case one generator fails. Starting capability is not required because it is provided by the ISG used for turret/chassis functions, unless duplication is desired. A single larger ISG is also an option.
- Inverter. This inverter is dedicated to this cooling circuit and has integrated controls for one motor.

• An electric driven cooling pump to cool the generator, the inverter, and the motor.

Shared electric components:

- A 1 gallon cooling reservoir containing 50/50 water/glycol solution.
- Vehicle controller.

Details can be found in Appendix F.

### **6.1 COOLING FAN RESULTS**

The hydraulic motor is 5.2 times more power dense by volume and 5.7 times more power dense by weight compared to an axial flux motor. The hydraulic pump is 2.6 times more power dense by volume and 2.9 times more power dense by weight compared to an ISG.

The hydraulic pump and motor are about 90% efficient giving an overall system efficiency around 81%. The electric components are 95% efficient with an overall system efficiency of 85.7%. The electric system will reduce the heat load rejection requirement by about 6.9 kW so a smaller radiator could be used.

Hydraulic flow requires a -12 ( $\emptyset$ 3/4") hose with an outside diameter of  $\emptyset$ 32 mm and a bend radius of 200 mm. The high voltage electric motor requires 2/0 wire which has an outside diameter of  $\emptyset$ 14.7 mm with a bend radius of 118 mm.

| Cooling Fan Scorecard   | <u>Hyd</u> | Elec |
|-------------------------|------------|------|
| Power Density           | ++         | 0    |
| Filter vs Inverter      | +          | 0    |
| Efficiency / Heat Load  | 0          | +    |
| Hyd lines vs Elec wires | 0          | ++   |

#### 7.0 CONCLUSIONS

At a component level, a hydraulic motor is more power dense than a comparable high voltage electric motor. However, the key is to evaluate this at a system level, rather than at a component level. At a system level, including all valves, controllers, lines and wires, reservoirs, etc. the systems are nearly the same.

To be competitive in power density, the electric system for the main actuators and motors needs to be at high voltage, typically around 350 V to 480 V. Electric motors are not size competitive at low voltage (24 V). A two voltage system for vehicles is recommended: 24 volts for sensors, lights, solenoids, controllers, etc. and 350 to 480 V systems for motors and actuators.

The type of motor is very important to get the power density needed to compete with hydraulics. Each motor type will have tradeoffs in performance, size, cost, and reliability. For example, the axial flux motors are larger in diameter but have less length<sup>25</sup>. Selecting the best motor for the application is not easy. Designer may pick a different type of motor due to size and shape differences to best integrate into the vehicle.

Since the size and shape is different from existing hydraulic components, and depends on what type of motor is chosen, it would be very difficult to fit electric components into existing design space. It would be best to start with a "clean sheet".

Also, it would make little sense to have a mixture of hydraulic and high-power electric components on the same vehicle. For example the reservoir requirements for each system is:

| Reservoir     | <u>Hyd</u> | Elec         |
|---------------|------------|--------------|
| Turret        | 15 gal     | 2 gal        |
| AC Compressor | 4 gal      | 1 gal        |
| Cooling Fan   | 4 gal      | <u>1 gal</u> |
| Total         | 23 gal     | 4 gal        |

If both systems were on the same vehicle then we would need two reservoirs of some capacity. For cooling we would need two radiators – one for hydraulic and one for cooling. There is no space for both, so it would be best to go all hydraulic or all electric.

Electric is more fuel efficient, so the fuel tank can be reduced in size and weight or the vehicle range could be increased.

As seen in other industries, electric solutions provide improved reliability. Service could be faster with improved diagnostics but possibly more expensive as service people are just replacing "black boxes". Rework of electric components can be difficult.

For medium sized tracked vehicles, new actuators for gun control need to be developed. A new slip ring will also need to be developed. This development should start now.

Also need to reevaluate the whole vehicle design to find the best integration of electric components into the vehicle.

### About Waltonen Engineering, Inc.:

Founded in 1957, Waltonen is an ISO 900:2015 certified innovative leader of full service engineering, design, manufacturing, and professional services. Our success in the military, automotive, aerospace, and transportation industries has been achieved through leading technologies, quality practices, and the commitment of our employees to exceed our customers' expectations.

For more information on Waltonen, go to <u>www.waltonen.com</u>.

# REFERENCES

- [1] afvdb.50megs.com, "105mm Gun Tank M1 Abrams". <u>http://afvdb.50megs.com/usa/m1abrams.</u> <u>html#M1</u>
- [2] Michael Green & Greg Stewart, "M1 Abrams at War", Zenith Press. <u>https://books.google.ch/books?id=M1P6j</u> <u>T8\_yrgC&pg=PA102&lpg=PA102&dq=</u> <u>m1+abrams+3+round+hull&source=bl&</u> <u>ots=U8xSWB1uQW&sig=m7YQX916k</u> <u>MjKGX9H0UII0\_vRMv0&hl=en&sa=X</u>

&ved=0ahUKEwibz7TV043aAhUGnRQ KHfYwA8U4ChDoAQg9MAI#v=snippe t&q=blow&f=false

- [3] Not What You Think, "Why M1 Abrams Tank Has No Auto-Loader". <u>https://www.youtube.com/watch?v=Gg3c</u> <u>a-qY0SE</u>
- [4] The Daily Aviation, "A Day in Life Inside US M1 Abrams Tank Firing Special Ammunition", (2:14 min.). <u>https://www.youtube.com/watch?v=w69</u> <u>UZC8cSts</u>
- [5] Meggitt Defense Systems, "Military and Aerospace Fans". <u>https://meggittdefense.com/fans-</u> <u>pumps/military-and-aerospace-fans/</u>
- [6] Turntide, "EVO Axial Flux Electric Motor AF240 Model, Datasheet\_v03TL", DOCT00382 Updated Sep 02, 2012. <u>https://turntide.com/technology/electrific</u> <u>ation/#ev-motors</u>
- [7] Turntide, "Motor-Turntide-NetZero-AXM-125". <u>https://turntide.com/resource-</u> <u>hub/turntide-netzero-axm-125-motor/</u>
- [8] Turntide, "Motor-Turntide-NetZero-AXM-130". <u>https://turntide.com/resource-</u> <u>hub/turntide-netzero-axm-130-motor/</u>
- [9] Turntide, "Motor-Turntide-NetZero-AXM-230". <u>https://turntide.com/resourcehub/turntide-netzero-axm-230-motor/</u>
- [10] Turntide, "Gen5 Motor Controller Size 9". <u>https://turntide.com/resourcehub/gen5-motor-controller-size-9/</u>
- [11] Dana, "IPM 120 Series, Internal Permanent Magnet Motors", <u>https://www.danatm4.com/wp-</u> <u>content/uploads/2020/07/IPM120-series-</u> <u>brochure-web.pdf</u>
- [12] Parker, "GVM Global Vehicle Motor", Permanent Magnet (PMAC) Motors and Generators for Traction, Electro-

Hydraulic Pumps (EHP) and Auxiliary Systems.

https://www.parker.com/content/dam/Par ker-com/Literature/Electromechanical-Europe/Literature/192\_300108\_GVM\_ca talogue.pdf

- [13] Parker, "GVI Global Vehicle Inverter", Mobile Inverters for Traction, Electro-Hydraulic Pumps (EHP) and Auxiliary Systems 24 to 650 VDC.
  <u>https://www.parker.com/content/dam/Par</u> <u>ker-com/Literature/Electromechanical-Europe/Literature/192\_300118\_GVI\_cata</u> <u>logue.pdf</u>
- [14] BAE Systems, "Integrated Starter Generator ISG-100/200/300". <u>https://gettozero.com/pdf/brochures/ISG\_datasheet\_US.pdf</u>
- [15] EMP Corp., "WP32 Electric Water Pump". <u>https://www.emp-corp.com/wpcontent/uploads/2021/03/WP32-Water-Pump-Spec-Sheet-2021.pdf</u>
- [16] Groschopp, "Inline Planetary Gearbox, Frame Size 73". <u>https://www.groschopp.com/gearbox/inli</u> <u>ne-planetary/73-2/</u>
- [17] Danielle Collins, "Roller Screw Actuators: Design and Applications", Linear Motion Tips, July 27, 2017. <u>https://www.linearmotiontips.com/roller-screw-actuators-design-and-applications/</u>
- [18] Tolomatic, "RSX Extreme High Force Electric Linear Actuators". https://www.tolomatic.com/products/prod uct-details/rsx-extreme-force-electriclinear-actuators/
- [19] Ewellix, "Roller Screw Catalog", IL-05003-5-EN January\_2023\_Roller\_screws, pg 24. <u>https://www.ewellix.com/en/products/bal</u> <u>l-and-roller-screws/roller-screws/planetary-roller-screws</u>
- [20] Anixter, "Wire Wisdom, Minimum Bend Radius".

https://www.anixter.com/content/dam/ani xter/resources/wire-wisdom/anixterminimum-bending-radius-wire-wisdomen.pdf

- [21] Cerrowire, "Ampacity Charts | Wire Gauge". <u>https://www.cerrowire.com/products/reso</u> urces/tables-calculators/ampacity-charts/
- [22] WireSizeCalculator.net, "Wire Size Chart and Maximum Amp Ratings". <u>http://wiresizecalculator.net/wiresizechart</u>.<u>htm</u>
- [23] Panduit, "Electrical Wire Size Selection Guide". <u>https://www.panduit.com/content/dam/pa nduit/en/products/media/4/54/254/3254/1</u> 3254.pdf
- [24] Colonial Wire & Cable Co. of New Jersey, Inc., "Wire Weights per 1000 Feet (in pounds)". <u>https://colonialwire.com/wpcontent/uploads/2013/09/WIRE-</u> WEIGHTS1.pdf
- [25] E-Mobility Engineering, "Axial Flux Motors". <u>https://www.emobility-</u> engineering.com/axial-flux-motors/
- [26] Mary Gannon, "Mobile Hydraulic Tips, Rating the real performance of hydraulic pumps", January 8, 2021. <u>https://www.mobilehydraulictips.com/rati</u> <u>ng-the-real-performance-of-hydraulicpumps/</u>
- [27] Accumulators Inc., "Parts List and Drawings – Piston Accumulators, 4 Inch Bore 3000 PSI". <u>https://www.accumulators.com/piston-accumulators/parts-list-drawings/#1494883168042-0572f28f-ecae</u>
- [28] Bosch Rexroth, "Axial Piston Variable Pump A10VO, Series 52 and 53, 0", RE 92703/2020-12-07.

https://www.boschrexroth.com/media/3bf d3271-ef6f-4ec8-8575-415ea1d73cff

- [29] Bosch Rexroth, "Axial Piston Fixed Motor A2FM Series 70", RE-A 9107/2022-07-27. <u>https://www.boschrexroth.com/en/us/med</u> ia-details/f7826778-350b-4234-ab2c-242c99c54bb8
- [30] Bosch Rexroth, "Axial Piston Variable Pump AA4VG Series 32", RE-A92003, 2018-06-01.
  <u>https://www.boschrexroth.com/media/cc4</u> 2f4a6-d831-44c8-8f4c-b767b266fb40
- [31] Marzocchi Pompe, "High Pressure Gear Pumps", Motori ad Ingranaggi Gear Motors. <u>https://www.marzocchipompe.com/sites/</u> <u>default/files/public-downloads/SERIE-</u> ALM-MARZOCCHI-POMPE.pdf
- [32] Parker, "Hydraulic Motor/Pump, Series F10/F11/F12 Fixed Displacement", Catalogue MSG30-8249/UK, 2022. <u>https://www.parker.com/content/dam/Par</u> <u>ker-</u> <u>com/Literature/PMDE/Catalogs/Fixed\_M</u>

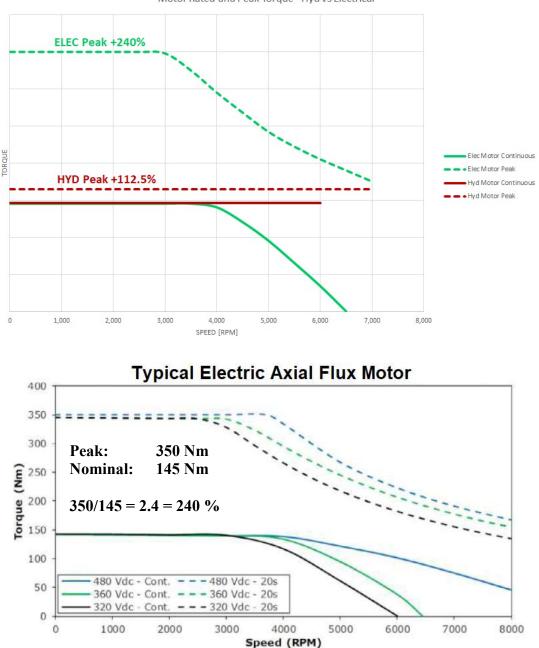
otors/F11\_F12/MSG30-8249-UK.pdf

[33] Parker, "Hose, Fittings and Equipment", Catalog 4400, October 2022.

https://www.parker.com/Literature/Hose %20Products%20Division/Catalog%204 400%20PDF%20Files/HPD\_4400\_Catal og.pdf

- [34] Parker, "Tube, Fittings", Catalog 4300", Version 5, March 2023. <u>https://www.parker.com/content/dam/Parker-com/Literature/Tube-Fittings-Division/4300 Catalog Cover.pdf</u>
- [35] Parker, "Hydraulic and Lube Filtration Products", Catalog 2300-17, HFF, 4/2023. <u>https://www.parker.com/content/dam/Par kercom/Literature/EMHFF/HFD\_Catalog/C</u> atalog-2300-HFF.pdf
- [36] MIL-PRF-46170E, "Hydraulic Fluid, Rust Inhibited, Fire Resistant, Synthetic Hydrocarbon Base, NATO Code No. H-544", 30 May 2013. <u>https://quicksearch.dla.mil/Transient/2AF</u> <u>E826632904563A764BD1708B8EDC2.p</u> <u>df</u>
- [37] HydraForce, "SV12-34 Solenoid Valve Spool, 3 Port, 2 Position". <u>https://www.hydraforce.com/products/val</u> <u>ves/solenoid-onoff-controls/sv12-34/</u>
- [38] HydraForce, "PV70-30 Normally Closed Pressure Compensated Proportional Flow Regulator". <u>https://www.hydraforce.com/products/val</u> <u>ves/electro-proportional-controls/pv70-30/</u>

## **APPENDIX A – TURRET = AZIMUTH + ELEVATION**


|                                 | Azimuth                                        |                             |  |
|---------------------------------|------------------------------------------------|-----------------------------|--|
| Speed                           | 40° degrees per second <sup>1</sup> = 6.67 RPM |                             |  |
| Torque                          | Estimated 40,000 Nm                            |                             |  |
| Power                           |                                                |                             |  |
| FOWEI                           | Estimated 28 kW (37.5 hp)                      | Flastwis                    |  |
|                                 | Hydraulic<br>Hydraulia Mater                   | Electric<br>Electric Motor  |  |
| Tune                            | Hydraulic Motor<br>Axial Piston Bent Axis      |                             |  |
| Type                            |                                                | Axial Flux<br>5000 RPM      |  |
| Nominal Speed                   | Proprietary<br>110.3 bar 1600 PSI              |                             |  |
| Pressure/Voltage<br>Shaft Power | 30.0 kW                                        | 350 Vdc<br>52.4 kW          |  |
| Volume                          | 2592 cc                                        | 6516 cc                     |  |
| Weight (dry)                    | 10.7 kg (Estimated)                            | 22.0 kg                     |  |
| Power Density                   | 30.0/2,592 = 11.57E-3 kW/cc                    | 52.4/6516 = 8.04E-3 kW/cc   |  |
| Volume Ratio                    | 1.4 X more Power Dense by Volume               | <u> </u>                    |  |
| Power Density                   | 30.0/10.7 = 2.80 kW/kg                         | 52.4/22.0 = 2.38 kW/kg      |  |
| Weight Ratio                    | 1.2 X more Power Dense by Weight               | <u> </u>                    |  |
|                                 | Gear Box                                       |                             |  |
| Size                            | Similar                                        | Similar                     |  |
| JIZE                            | Azimuth Contr                                  |                             |  |
| Model                           | Proprietary Valve                              | Motor Controller            |  |
| Volume                          | 10,000 cc                                      | 10,106 cc                   |  |
| Weight                          | 33 kg                                          | 6.0 kg                      |  |
| Volume Ratio                    | 1.0                                            | 1                           |  |
| Weight Ratio                    | 5.5 X more Weight                              | 1                           |  |
|                                 | Azimuth Heat Generation (1/2 Load, 1/2 Speed)  |                             |  |
| Pressure - Load                 | 55.2 bar 800 PSI (1/2 of Max Pressure)         | -                           |  |
| Pressure Drop at Valve          | 55.2 bar 800 PSI                               | -                           |  |
| Flow - Operating                | 23.9 GPM (1/2 of Max Flow)                     | -                           |  |
| Motor Power Average             | 8.31 kw Hyd Input Power                        | 7.89 kW Input Power         |  |
|                                 | 7.50 kW Shaft Output Power                     | Same 7.50 kW Shaft Power    |  |
| Motor Heat                      | 0.81 kW                                        | 0.39 kW                     |  |
| Generation Average              | (@ 95% Vol * 95% Mech Eff)                     | (7.89 kW @ 95% Motor)       |  |
| Valve Heat Generation           | 8.31 kW                                        | 0.39 kW                     |  |
|                                 | (Valve: 800 PSI, 23.9 GPM)                     | (Controller: 7.89 kW @ 95%) |  |
| Total Heat Generation           | 9.12 kW = 0.81 Motor + 8.31 Valve              | 0.78 kW = 0.39 kW Motor +   |  |
| @ 1/2 Load                      |                                                | 0.39 kW Controller          |  |
|                                 | Azimuth Con                                    | duit                        |  |
| Source Conduit                  | Hydraulic Hose SAE J517 100R17                 | Copper 75°C                 |  |
|                                 | -16 3000 PSI 207 bar                           | 1/0                         |  |
| Source Conduit OD               | Ø1.40"Ø35 mm                                   | Ø0.532"Ø13.5mm              |  |
| Bend Radius                     | 6"150 mm                                       | 8X OD 4.25" 108 mm          |  |
| Source Conduit Weight           | 0.79 lbs./ft. 1.17 kg/m                        | 0.372 lbs./ft.              |  |
|                                 | ELEVATION                                      |                             |  |
| <b>Elevation Range</b>          | -10° to +20°1                                  |                             |  |
|                                 |                                                |                             |  |

| Elevation Speed                  | 25° degrees per second <sup>1</sup>                  |                                                              |  |
|----------------------------------|------------------------------------------------------|--------------------------------------------------------------|--|
| Force                            | Estimated 60,000 to 65,000 N (13,500 to 14,600 lbs.) |                                                              |  |
| Power                            | Estimated 13 kW (17.4 hp)                            |                                                              |  |
|                                  | Hydraulic Electric                                   |                                                              |  |
|                                  | Elevation Cylinder                                   | Roller Screw                                                 |  |
| Туре                             | Double rod cylinder                                  | Roller Screw                                                 |  |
| Flow/Current                     | 69.9 LPM 18.5 GPM                                    | 145 Arms Continuous                                          |  |
| Pressure/voltage                 | 110.3 bar 1600 PSI                                   | 350 v                                                        |  |
| Force                            | 64283 N 14,451 lbs. @ 1600 PSI                       | 66,193 N 14,881 lbs (System)                                 |  |
| Power Output                     | 12.86 kW 17.2 hp                                     | 13.24 kw 17.8 hp                                             |  |
| Volume                           | 8,267 cc                                             | 24,961 cc                                                    |  |
| Weight (dry)                     | 8,267*7.850E-3*0.8 fill factor = 52 kg               | 82.9 kg                                                      |  |
| Power Density                    | 12.86/8267 = 1.56E-3 kW/cc                           | 13.24/24961 = 0.53E-3 kW/cc                                  |  |
| Volume Ratio                     | 2.9 X more Power Dense by Volume                     | 1                                                            |  |
| Power Density                    | 12.86/52 = 0.25 kW/kg                                | 13.24/82.9 = 0.16 kW/kg                                      |  |
| Weight Ratio                     | 1.6 X more Power Dense by Weight                     | 1                                                            |  |
|                                  | Elevation Cont                                       | roller                                                       |  |
| Model                            | Proprietary Valve                                    | Motor Controller                                             |  |
| Volume                           | 12,000 cc                                            | 10,106 cc                                                    |  |
| Weight                           | 40 kg                                                | 6.0 kg                                                       |  |
| Volume Ratio                     | 1.2 X more Volume                                    | 1                                                            |  |
| Weight Ratio                     | 6.7 X more Weight                                    | 1                                                            |  |
|                                  | Elevation Heat Generation (1                         | /2 Load, 1/2 Speed)                                          |  |
| Actuator Power                   | 3.28 kw Hyd Input Power                              | 4.01 kW Input Power                                          |  |
| Average                          | 3.21 kW 4.3 hp (800 PSI @ 100mm/s)                   | Same 3.21 kW Output Power                                    |  |
| Actuator Heat                    | 0.07 kW                                              | 0.80 kW                                                      |  |
| Generation Average               | (3.28 @ 98% Overall Eff)                             | (4.01 kW @ 80% Actuator)                                     |  |
| Valve Heat Generation            | 3.22 kW                                              | 0.20 kW                                                      |  |
|                                  | (Valve: 800 PSI, 9.25 GPM)                           | (Controller: 4.01 kW @ 95%)                                  |  |
| Total Heat Generation            | 3.29 kW = 0.07 kW Cyl + 3.22 kW Valve                | 1.00 kW = 0.80 kW Act + 0.20                                 |  |
|                                  |                                                      | kW Controller                                                |  |
| <b>E</b> L (0)                   | Elevation Cor                                        |                                                              |  |
| Flow/Current                     | 69.9 LPM 18.5 GPM                                    | 145 Arms Continuous                                          |  |
| Source Conduit                   | Hydraulic Hose SAE J517 100R17                       | Copper 75°C                                                  |  |
| Course Conduit OD                | -12 3000 PSI 207 bar                                 | 1/0<br>do 522" dd 2 5mm                                      |  |
| Source Conduit OD<br>Bend Radius | Ø1.10″Ø28 mm<br>4.75″120 mm                          | Ø0.532″ Ø13.5mm                                              |  |
|                                  |                                                      | 8X OD 4.25" 108 mm                                           |  |
| Source Conduit Weight            | 0.58 lbs./ft. 0.86 kg/m<br>Hydraulic Source          | 0.372 lbs./ft.<br>Electric Source                            |  |
|                                  |                                                      |                                                              |  |
| Туре                             | Pump<br>Pump, Axial Piston, Variable                 | Integrated Starter Generator<br>Integrated Starter Generator |  |
| Press/Voltage Capable            | 250 bar 3600 PSI                                     |                                                              |  |
| Flow/Current Capable             | 212 LPM 56.0 GPM (100%)                              |                                                              |  |
| Cont. Power Capable              | 79.7 kW (250 bar, 90% Overall Eff)                   | 145 kW                                                       |  |
| Volume                           | 11,412 cc                                            | 43,852 cc                                                    |  |
| Volume                           |                                                      |                                                              |  |

| Weight (dry)           | 45 kg (with through drive)              | 119 kg                    |
|------------------------|-----------------------------------------|---------------------------|
| Power Density          | 79.7/11412 = 6.98E-3 kW/cc              | 145/43852 = 3.31E-3 kW/cc |
| (Volume)               | , , , , , , , , , , , , , , , , , , , , |                           |
| Volume Ratio           | 2.1 X more Power Dense by Volume        | 1.0                       |
| Power Density          | 79.7/45 = 1.77 kW/kg                    | 145/119 = 1.22 kW/kg      |
| Weight Ratio           | 1.5 X more Power Dense by Weight        | 1.0                       |
| Controls               | Pump controls included in main pump     | See inverter              |
|                        | Source Heat Generation (Azimuth and El  |                           |
| Pump Power Average     | 12.82 kw Shaft Input Power              | 12.15 kW Input Power      |
|                        | 11.54 kW (800 PSI @ 33.15 GPM)          | Same 11.54 kW Output Powe |
| Source Heat            | 1.28 kW                                 | 0.61 kW                   |
| Generation Average     | (12.82 @ 90% Pump Overall Eff)          | (12.15 kW @ 95% ISG Eff)  |
| Ŭ                      | Energy Store                            |                           |
|                        | Accumulator                             | Battery (Not needed)      |
| Туре                   | Accumulator, Piston                     | -                         |
| Capacity               | 2.0 Gallon, 4" Bore, 3000 PSI           | -                         |
| Volume                 | 13,142 cc                               | _                         |
| Weight (dry)           | 36 kg (dry)                             | _                         |
| 0 ( //                 | Additional It                           | ems                       |
| ltem                   | Filter                                  | Inverter                  |
| Supply & Return Filter | 4,218 cc each 2 x 4218 = 8,436 cc       | 24,442 cc                 |
| Weight (dry)           | 3.9 kg each 2 x 3.9 = 7.8 kg            | 25 kg                     |
| Heat Generation        | 0.58 kW                                 | 0.60 kW                   |
|                        | Turret Valve                            | None                      |
| Volume                 | 6,000 cc                                | _                         |
| Weight                 | 20 kg                                   | -                         |
| Heat Generation        | 1.44 kW                                 | -                         |
|                        |                                         |                           |
| Total Volume           | 8,436 + 6,000 = 14,436 cc               | 24,442 cc                 |
| Total Weight           | 7.8 + 20 = 27.8 kg                      | 25 kg                     |
| Volume Ratio           | 1.7 X Less Volume                       | 1                         |
| Weight Ratio           | 1.1 X More Weight                       | 1                         |
| Total Heat Generation  | 2.02 kW = (0.58 kW + 1.44 kW)           | 0.60 kW                   |
|                        | No additional cooling pump required     | Electric Cooling Pump     |
| Cooling/Charge/Boost   | -                                       | 50/50 water-glycol        |
| Charge/Cooling Pump    | -                                       | 4,256 cc                  |
|                        |                                         | 6.7 lbs 3.03 kg           |
| Pump Controls          | Included in main pump                   | Included on cooling pump  |
|                        | Reservoir & I                           | Fluid                     |
| Fluid                  | Hydraulic Oil MIL-PRF-46170             | 50/50 water-glycol        |
| Reservoir/Cooling      | ,<br>15 gal 56,781 cc                   | 2 gal 7,751 cc            |
| Volume Ratio           | 7.5 X More Volume                       | 1                         |
| Density of fluid       | 859 kg/m <sup>3</sup>                   | 1050 kg/m <sup>3</sup>    |
| ,<br>Weight            | 48.8 kg                                 | 8.1 kg                    |
| Weight Ratio           | 6.0 X More Weight                       | 1                         |

|                       | Controller                |                |  |
|-----------------------|---------------------------|----------------|--|
| Vehicle Controller    | Same Same                 |                |  |
|                       | Heat Generation (1/2 Lo   | ad, 1/2 Speed) |  |
|                       | Hydraulic                 | Electric       |  |
| Az Motor              | 0.81 kW                   | 0.39 kW        |  |
| Az Valve/Controller   | 8.31 kW                   | 0.39 kW        |  |
| Elev Actuator / Motor | 0.07 kW                   | 0.80 kW        |  |
| Elev Valve/Controller | 3.22 kW                   | 0.20 kW        |  |
| Pump / ISG            | 1.28 kW                   | 0.61 kW        |  |
| Filter & Valve /      | 0.58 kW                   | 0.60 kW        |  |
| Inverter              |                           |                |  |
| Turret Valve          | 1.44 kW                   | -              |  |
| Total                 | 15.71 kW                  | 2.99 kW        |  |
| Heat Ratio            | 5.3 X More Heat Generated | 1              |  |





Motor Rated and Peak Torque - Hyd vs Electrical

Turntide, "Motor-Turntide-NetZero-AXM-130-Datasheet", <u>https://turntide.com/resource-hub/turntide-netzero-axm-130-motor/</u>

**Hydraulic Toruqe** 
$$M = \frac{V_g \Delta P \eta_{hm}}{20 \pi}$$

*Normial Pressure* 400 *bar* 
$$M = \frac{32\,400\,100\%}{20\,\pi} = 203.7\,Nm$$

Maximum Pressure 450 bar 
$$M = \frac{32\,450\,100\%}{20\,\pi} = 229.2\,Nm$$

$$\frac{Peak}{Nominal} \quad \frac{229.2 \ Nm}{203.7 \ Nm} = 1.125 = 112.5\%$$

Bosch Rexroth, "Axial Piston Fixed Motor A2FM Series 70", RE-A 9107/2022-07-27, https://www.boschrexroth.com/en/us/media-details/f7826778-350b-4234-ab2c-242c99c54bb8

| Animo DoorTravel610 mm 24" $^{23,4}$ Travel Time0.8 $^{2,3,4}$ Travel Speed762.5 mm/s = (610 mm / 0.8s)ForceEstimated 5000 N (1124 lbs) PeakForceEstimated 5000 N (1124 lbs) PeakPower Output610 mm 24"Gower Output3.81 kW 5.1 hpPower Output3.81 kW 5.1 hpPower Input3.81 kW 5.1 hpPower Input3.89 kW (98% Overall Eff)Volume1853 ccBower Unput3.89 kW (98% Overall Eff)Volume1853 ccBower Unput5 kg (estimated)Type-Press/Voltage Capable-Press/Voltage Capable-Press/Voltage Capable-Volume-Rated Torque & Speed-Type-Notare-Rated Torque & Speed-Neight (dry)Not applicableGearbox-Type-Inline Planetary 0.11 97%Volume-1,104 cc, 3 kgPower Density3.81/1853 cc4,205 ccType-Inline Planetary 0.11 97%Volume & Control ValveMotor ControllerPower Density3.81/1853 cc4,205 ccType-1,104 cc, 3 kgPower Density3.81/1853 cc4,205 ccTotal Size1853 cc4,206 cc100 Power Density3.81/853 closes by Volume1.0Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>APPENDIX C – AMMO DOOR</b> |                                     |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|----------------------------|
| Travel Time         0.8 s <sup>2.3.4</sup> Travel Speed         762:-5 mm/s = (610 mm / 0.8s)           Force         Estimated 5000 N (1124 lbs) Peak           Hydraulic         Electric           Quinter - Single Rod Double Acting         Rack and Pinion           Travel         610 mm 24"         610 mm 24"           Power Output         3.81 kW 5.1 hp         3.81 kW 5.1 hp         3.81 kW 5.1 hp           Pressure/voltage         78 bar 1131 PSI under load         -         -           Power Input         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)           Volume         1853 cc         807 cc         807 cc           Weight (dry)         5 kg (estimated)         Rack + Pinion = Total 5.5 kg + 0.8 kg = 6.3 kg           Trype         -         Interior Permanent Magnet           Press/Voltage Capable         -         200 Arms           Rated Torque & Speed         -         1.6 kW (91% Eff)           Volume         -         225 cc           Weight (dry)         -         7 kg           Volume & Weight         -         1.0 kW (91% Eff)           Volume & Speed         -         1.0 kg Motor           Type         -         1.0 kd cc, 3 kg                                                                                                                      |                               |                                     |                            |
| Travel Speed         762.5 mm/s = (610 mm / 0.8s)           Force         Estimated 5000 N (1124 lbs) Peak           Hydraulic         Electric           Cylinder - Single Rod Double Acting         Rack and Pinion           Travel         610 mm 24"         610 mm 24"           Power Output         3.81 kW 5.1 hp         3.81 kW 5.1 hp         3.81 kW 5.1 hp           Pressure/voltage         78 bar 1131 PS1 under load         -         -           Plow/Current         29.34 LPM 7.8 GPM         -         -           Power Input         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)         Verall Eff)           Volume         1853 cc         807 cc         807 cc           Weight (dry)         5 kg (estimated)         Rack + Pinion = Total 5.5 kg + 0.8 kg = 6.3 kg           Motor         Use Turret Pump         Motor           Press/Voltage Capable         -         24 V to 96 V           Flow/Current Capable         -         1.6 kW (91% Eff)           Volume         -         1.10 kOt cc, 3 kg           Type         -                                                                                                                                | Travel                        | 610 mm 24" <sup>2,3,4</sup>         |                            |
| Force         Estimated 5000 N (1124 lbs) Peak           Hydraulic         Electric           Cylinder – Single Rod Double Acting         Rack and Pinion           Travel         610 mm 24"         610 mm 24"           Power Output         3.81 kW 5.1 hp         3.81 kW 5.11 hp           Pressure/voltage         78 bar 1131 PSI under load         -           Flow/Current         29.34 LPM 7.8 GPM         -           Power Input         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)           Volume         1853 cc         807 cc           Weight (dry)         5 kg (estimated)         Rack + Pinion = Total           5.5 kg + 0.8 kg = 6.3 kg         -         100 km 24"           Press/Voltage Capable         -         200 Arms           Rated Torque & Speed         -         200 Arms           Rated Torque & Speed         -         1.6 kW (91% Eff)           Volume         -         1.6 kW (91% 201 97%           Volume         -         1.101 cc, 3 kg           Volume & Speed         -         1.6 kW (91% 201 97%           Volume         -         1.6 kW (91% 201 97%           Volume         -         1.6 kW (91% 201 97%           Volume         -         1.6 kW (91                                                                                                                                        | Travel Time                   | 0.8 s <sup>2,3,4</sup>              |                            |
| Force         Estimated 5000 N (1124 lbs) Peak           Hydraulic         Electric           Cylinder – Single Rod Double Acting         Rack and Pinion           Travel         610 mm 24"         610 mm 24"           Power Output         3.81 kW 5.1 hp         3.81 kW 5.11 hp           Pressure/voltage         78 bar 1131 PSI under load         -           Flow/Current         29.34 LPM 7.8 GPM         -           Power Input         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)           Volume         1853 cc         807 cc           Weight (dry)         5 kg (estimated)         Rack + Pinion = Total           5.5 kg + 0.8 kg = 6.3 kg         -         100 mm 24"           Type         -         Interior Permanent Magnet           Press/Voltage Capable         -         24 V to 96 V           Flow/Current Capable         -         200 Arms           Rated Torque & Speed         -         1.6 kW (91% Eff)           Volume         -         1.6 kW (91% Eff)           Volume         -         1.104 cc, 3 kg           Cype         -         Inline Planetary 10:1 97%           Volume         -         1.04 cc, 3 kg           Out applicable         Gearbox         0                                                                                                                                        | Travel Speed                  | 762.5 mm/s = (610 mm / 0.8s)        |                            |
| HydraulicElectricCylinder - Single Rod Double ActingRack and PinionTravel610 mm 24"610 mm 24"Power Output3.81 kW 5.1 hp3.81 kW 5.1 hpPressure/voltage78 bar 1131 PSI under load-Flow/Current29.34 LPM 7.8 GPM-Power Input3.89 kW (98% Overall Eff)3.89 kW (98% Overall Eff)Volume1853 cc807 ccWeight (dry)5 kg (estimated)Rack + Pinion = Total5. kg + 0.8 kg = 6.3 kg5. kg + 0.8 kg = 6.3 kgType-Interior Permanent MagnetPress/Voltage Capable-200 ArmsRated Torque & Speed-5 Nm @ 3000 RPMRated Power-1.6 kW (91% Eff)Volume-7 kgVolume-1.16 kW (91% Eff)Volume-1.0 dc c, 3 kgVolume-1.0 dc c, 3 kgType-1.0 dc c, 3 kgVolume & Siget-3.81/4206 = 0.906E-3 kW/ccVolume & Weight-1.0 dc c, 3 kgVolume & Siget-1.0 dc c, 3 kgVolume & Siget-1.0 dc c, 3 kgVolume & Weight-3.81/4206 = 0.906E-3 kW/ccVolume Ratio2.3 X more Power Dense by Volume1.0Power Density3.81/16.3 = 0.724 kW/kg3.81/16.3 = 0.234 kW/kgWeight Ratio3.3 X more Power Dense by Volume1.0Power Density3.81/5 = 0.762 kW/kg3.81/16.3 = 0.234 kW/kgWeight Ratio3.3 X more Power Dense by Volume1.0 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                  |                               |                                     |                            |
| Travel         610 mm 24"         610 mm 24"           Power Output         3.81 kW 5.1 hp         3.81 kW 5.11 hp           Pressure/voltage         78 bar 1131 PSI under load         -           Flow/Current         29.34 LPM 7.8 GPM         -           Power Input         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)           Volume         1853 cc         807 cc         807 cc           Weight (dry)         5 kg (estimated)         Rack + Pinion = Total         5.5 kg + 0.8 kg = 6.3 kg           Type         -         Interior Permanent Magnet         -           Press/Voltage Capable         -         24 V to 96 V         -           Flow/Current Capable         -         200 Arms         Rated Torque & Speed         -         3.000 RPM           Rated Power         -         1.6 kW (91% Eff)         Volume         -         2295 cc           Weight (dry)         -         7 kg         -         1.104 cc, 3 kg           Cylume & Weight         -         1.104 cc, 3 kg         -           Type         -         1.104 cc, 3 kg         -           Volume & Weight         5 kg (estimated)         1.6.3 kg         -           Type         - <td></td> <td></td> <td>Electric</td>                                                                                       |                               |                                     | Electric                   |
| Power Output3.81 kW 5.1 hp3.81 kW 5.1 hpPressure/voltage78 bar 1131 PSI under load-Flow/Current29.34 LPM 7.8 GPM-Power Input3.89 kW (98% Overall Eff)3.89 kW (98% Overall Eff)Volume1853 cc807 ccWeight (dry)5 kg (estimated)Rack + Pinion = Total5.5 kg + 0.8 kg = 6.3 kg5 kg + 0.8 kg = 6.3 kgType-Interior Permanent MagnetPress/Voltage Capable-24 V to 96 VFlow/Current Capable-200 ArmsRated Torque & Speed-5 Nm @ 3000 RPMRated Power-1.6 kW (91% Eff)Volume-7 kgWeight (dry)-7 kgVolume-1,104 cc, 3 kgType-Inline Planetary 10:1 97%Volume & Weight-1,104 cc, 3 kgPower Density3.81/1853 = 2.056E-3 kW/cc3.81/4206 = 0.906E-3 kW/ccVolume Ratio2.3 X more Power Dense by Volume1.0Power Density3.81/1853 = 2.056E-3 kW/cc3.81/16.3 = 0.234 kW/kgVolume Ratio2.3 X more Power Dense by Weight1.0ControlControl Control ValveMotor ControllerVolume10.24 cc2139 ccVolume10.24 cc<                                                                                                                                                                                                                                                                                                                                                               |                               | Cylinder – Single Rod Double Acting | Rack and Pinion            |
| Pressure/voltage78 bar 1131 PSI under load-Flow/Current29.34 LPM 7.8 GPM-Power Input3.89 kW (98% Overall Eff)3.89 kW (98% Overall Eff)Volume1853 cc807 ccWeight (dry)5 kg (estimated)Rack + Pinion = Total<br>5.5 kg + 0.8 kg = 6.3 kgType-Interior Permanent MagnetPress/Voltage Capable-24 V to 96 VFlow/Current Capable-24 V to 96 VRated Torque & Speed-5 Nm @ 3000 RPMRated Power-1.6 kW (91% Eff)Volume-7 kgWeight (dry)-7 kgVolume-1.104 cc, 3 kgType-1.0 kW (91% Eff)Volume & Weight-1.104 cc, 3 kgType-1.104 cc, 3 kgType-3.81 /4206 = 0.906E-3 kW/ccTotal Size1853 cc4.206 ccTotal Weight5 kg (estimated)16.3 kgPower Density3.81/5 = 0.762 kW/kg3.81/16.3 = 0.234 kW/kgWeight Ratio3.3 X more Power Dense by Volume1.0Power Density3.3 X more Power Dense by Weight1.0ControlControl ValveMotor ControllerVolume10.2 kg c2.13 g ccVolume1.02 kg c2.13 g ccVolume1.02 kg c3.45 g bls.Conduit ODØ.068" Ø17 mmØ.0630" Ø16.0mmConduit ODØ.068" Ø17 mmØ.0630" Ø16.0mmConduit Bend Radius2.1/2" 65 mm8X OD 5.04" 128 mm <td>Travel</td> <td>610 mm 24"</td> <td>610 mm 24"</td>                                                                                                                                                                                                                                                                                                | Travel                        | 610 mm 24"                          | 610 mm 24"                 |
| Flow/Current         29.34 LPM 7.8 GPM         -           Power Input         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)           Volume         1853 cc         807 cc           Weight (dry)         5 kg (estimated)         Rack + Pinion = Total           5.5 kg + 0.8 kg = 6.3 kg         0         0           Type         -         Interior Permanent Magnet           Press/Voltage Capable         -         24 V to 96 V           Flow/Current Capable         200 Arms         200 Arms           Rated Torque & Speed         -         5 Nm @ 3000 RPM           Rated Power         -         1.6 kW (91% Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Type         -         1.0 kW (91% Eff)           Volume & Weight         -         1.0 kg           Type         -         1.0 kg           Type         -         1.0 kg           Total Size         1853 cc         4.206 cc           Total Size         1853 cc         4.206 cc           Total Size         1.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume <td< td=""><td>Power Output</td><td>3.81 kW 5.1 hp</td><td>3.81 kW 5.11 hp</td></td<>                                                                                     | Power Output                  | 3.81 kW 5.1 hp                      | 3.81 kW 5.11 hp            |
| Power Input         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)           Volume         1853 cc         807 cc           Weight (dry)         5 kg (estimated)         Rack + Pinion = Total           5.5 kg + 0.8 kg = 6.3 kg         5.5 kg + 0.8 kg = 6.3 kg           Use Turret Pump         Motor           Type         -         Interior Permanent Magnet           Press/Voltage Capable         -         24 V to 96 V           Flow/Current Capable         200 Arms           Rated Torque & Speed         -         5 Nm @ 3000 RPM           Rated Power         -         1.6 kW (91%) Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Type         -         1.104 cc; 3 kg           Type         -         1.104 cc; 3 kg           Volume & Weight         -         1.104 cc; 3 kg           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E ·3 kW/cc         3.81/4206 = 0.906E ·3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg                                                                                                                                           | Pressure/voltage              | 78 bar 1131 PSI under load          | -                          |
| Power Input         3.89 kW (98% Overall Eff)         3.89 kW (98% Overall Eff)           Volume         1853 cc         807 cc           Weight (dry)         5 kg (estimated)         Rack + Pinion = Total           5.5 kg + 0.8 kg = 6.3 kg         5.5 kg + 0.8 kg = 6.3 kg           Use Turret Pump         Motor           Type         -         Interior Permanent Magnet           Press/Voltage Capable         -         24 V to 96 V           Flow/Current Capable         200 Arms           Rated Torque & Speed         -         5 Nm @ 3000 RPM           Rated Power         -         1.6 kW (91%) Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Type         -         1.104 cc; 3 kg           Type         -         1.104 cc; 3 kg           Volume & Weight         -         1.104 cc; 3 kg           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E ·3 kW/cc         3.81/4206 = 0.906E ·3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg                                                                                                                                           |                               | 29.34 LPM 7.8 GPM                   | -                          |
| Volume1853 cc807 ccWeight (dry)5 kg (estimated)Rack + Pinion = Total<br>5.5 kg + 0.8 kg = 6.3 kgUse Turret PumpMotorType-Interior Permanent MagnetPress/Voltage Capable-24 V to 96 VFlow/Current Capable200 ArmsRated Torque & Speed-5 Nm @ 3000 RPMRated Power-1.6 kW (91% Eff)Volume-2295 ccWeight (dry)-7 kgType-Inline Planetary 10:1 97%Volume & Weight-1,104 cc, 3 kgType-1nline Planetary 10:1 97%Volume & Weight-1,104 cc, 3 kgTotal Size1853 cc4,206 ccTotal Size1853 cc3.81/4206 e 0.906E-3 kW/ccVolume Ratio2.3 X more Power Dense by Volume1.0Power Density3.81/1853 = 2.056E-3 kW/cc3.81/4206 = 0.906E-3 kW/ccVolume Ratio2.3 X more Power Dense by Volume1.0ControlControl ValveMotor ControllerWeight Ratio3.3 X more Power Dense by Volume1.0ControlControl ValveMotor ControllerVolume1.024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.Conduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 3.89 kW (98% Overall Eff)           | 3.89 kW (98% Overall Eff)  |
| List of the start         5.5 kg + 0.8 kg = 6.3 kg           Use Turret Pump         Motor           Type         -         Interior Permanent Magnet           Press/Voltage Capable         -         24 V to 96 V           Flow/Current Capable         200 Arms         200 Arms           Rated Torque & Speed         -         5 Nm @ 3000 RPM           Rated Power         -         1.6 kW (91% Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Type         -         Inline Planetary 10:1 97%           Volume & Weight         -         1,104 cc, 3 kg           Type         -         Inline Planetary 10:1 97%           Volume & Weight         -         1,104 cc, 3 kg           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Volume         1.0           Control                                                                                                                                             | •                             |                                     | 807 cc                     |
| S.5 kg + 0.8 kg = 6.3 kg           Use Turret Pump         Motor           Type         -         Interior Permanent Magnet           Press/Voltage Capable         -         24 V to 96 V           Flow/Current Capable         200 Arms         200 Arms           Rated Torque & Speed         -         5 Nm @ 3000 RPM           Rated Power         -         1.6 kW (91% Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Type         -         Inline Planetary 10:1 97%           Volume & Weight         -         1,104 cc, 3 kg           Type         -         Inline Planetary 10:1 97%           Volume & Weight         -         1,104 cc, 3 kg           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Volume         1.0           Control         Control Valve                                                                                                                                                 | Weight (dry)                  | 5 kg (estimated)                    | Rack + Pinion = Total      |
| Type-Interior Permanent MagnetPress/Voltage Capable-24 V to 96 VFlow/Current Capable200 ArmsRated Torque & Speed-5 Nm @ 3000 RPMRated Power-1.6 kW (91% Eff)Volume-2295 ccWeight (dry)-7 kgType-1,104 cc, 3 kgType-1,104 cc, 3 kgVolume & Weight-1,104 cc, 3 kgTotal Size1853 cc4,206 ccTotal Weight5 kg (estimated)16.3 kgPower Density3.81/1853 = 2.056E-3 kW/cc3.81/4206 = 0.906E-3 kW/ccVolume Ratio2.3 X more Power Dense by Volume1.0Power Density3.81/5 = 0.762 kW/kg3.81/16.3 = 0.234 kW/kgWeight Ratio3.3 X more Power Dense by Weight1.0ControlControl ValveMotor ControllerVolume1024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.Weight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.Conduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                     | 5.5 kg + 0.8 kg = 6.3 kg   |
| Press/Voltage Capable-24 V to 96 VFlow/Current Capable200 ArmsRated Torque & Speed-Rated Power-Volume-Volume-Volume-Type-Type-Inline Planetary 10:1 97%Volume & Weight-1,104 cc, 3 kgCylinderRack & Pinion, GB, MotorTotal Size1853 cc4,206 ccTotal Size16.3 kgPower Density3.81/1853 = 2.056E-3 kW/ccVolume Ratio2.3 X more Power Dense by VolumePower Density3.81/5 = 0.762 kW/kgWeight Ratio3.3 X more Power Dense by Weight1.0ControlControlControl ValveMotor ControllerSupplierProprietaryMotor ControllerVolume1.024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.Conduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Use Turret Pump                     | Motor                      |
| Flow/Current Capable         200 Arms           Rated Torque & Speed         -         5 Nm @ 3000 RPM           Rated Power         -         1.6 kW (91% Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Opticable         Gearbox           Type         -         Inline Planetary 10:1 97%           Volume & Weight         -         1,104 cc, 3 kg           Total Size         1853 cc         4,206 cc           Total Size         1853 cc         4,206 cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0         1.0           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc         Volume Ratio           Volume Ratio         2.3 X more Power Dense by Volume         1.0         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Weight         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1.024 cc         2.3 kg 5 lbs.      <                                                                                                                                               | Туре                          | -                                   | Interior Permanent Magnet  |
| Flow/Current Capable         200 Arms           Rated Torque & Speed         -         5 Nm @ 3000 RPM           Rated Power         -         1.6 kW (91% Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Mot applicable         Gearbox           Type         -         1,104 cc, 3 kg           Volume & Weight         -         1,104 cc, 3 kg           Volume & Weight         -         4,206 cc           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Volume         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1.024 cc         2.3 kg 5 lbs.           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit                                                                                                                                                     | Press/Voltage Capable         | -                                   |                            |
| Rated Torque & Speed         -         5 Nm @ 3000 RPM           Rated Power         -         1.6 kW (91% Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Type           Type         -           Volume & Weight         -         1,104 cc, 3 kg           Volume & Weight         -         1,104 cc, 3 kg           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Volume         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1024 cc         2.13 kg 5 lbs.           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit OD         Ø.06.68" Ø17 mm                                                                                                                                                     |                               |                                     | 200 Arms                   |
| Rated Power         -         1.6 kW (91% Eff)           Volume         -         2295 cc           Weight (dry)         -         7 kg           Not applicable         Gearbox           Type         -         1,104 cc, 3 kg           Volume & Weight         -         1,104 cc, 3 kg           Type         -         1,104 cc, 3 kg           Cylinder         Rack & Pinion, GB, Motor           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Volume         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1024 cc         2139 cc           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit OD         Ø0.68"                                                                                                                                         | · · · · ·                     | -                                   | 5 Nm @ 3000 RPM            |
| Weight (dry)         -         7 kg           Not applicable         Gearbox           Type         -         Inline Planetary 10:1 97%           Volume & Weight         -         1,104 cc, 3 kg           Cylinder         Rack & Pinion, GB, Motor           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Volume         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1024 cc         2.3 kg 5 lbs.           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm                                                                                                                                                           | · · ·                         | -                                   | 1.6 kW (91% Eff)           |
| Not applicableGearboxType-Inline Planetary 10:1 97%Volume & Weight-1,104 cc, 3 kgCylinderRack & Pinion, GB, MotorTotal Size1853 cc4,206 ccTotal Weight5 kg (estimated)16.3 kgPower Density3.81/1853 = 2.056E-3 kW/cc3.81/4206 = 0.906E-3 kW/ccVolume Ratio2.3 X more Power Dense by Volume1.0Power Density3.81/5 = 0.762 kW/kg3.81/16.3 = 0.234 kW/kgWeight Ratio3.3 X more Power Dense by Weight1.0ControlControl ValveMotor ControllerSupplierProprietaryMotor ControllerVolume1024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.ConduitMydraulic Hose SAE J517 100R17<br>-6 3000 PSI 207 bar ½ Bend Radius3/0 AWG Assume 24 V systemConduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume                        | -                                   | 2295 cc                    |
| Type-Inline Planetary 10:1 97%Volume & Weight-1,104 cc, 3 kgCylinderRack & Pinion, GB, MotorTotal Size1853 ccTotal Weight5 kg (estimated)Power Density3.81/1853 = 2.056E-3 kW/ccVolume Ratio2.3 X more Power Dense by VolumePower Density3.81/5 = 0.762 kW/kgWeight Ratio3.3 X more Power Dense by Weight1.01.0ControlControl ValveMotor ControllerSupplierProprietaryMotor ControllerVolume1024 cc2.5 kg 5.51 lbs. (Estimated)2.5 kg 5.51 lbs. (Estimated)2.5 kg 5.51 lbs. (Estimated)Conduit ODØ0.68" Ø17 mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weight (dry)                  | -                                   | 7 kg                       |
| Type         -         Inline Planetary 10:1 97%           Volume & Weight         -         1,104 cc, 3 kg           Cylinder         Rack & Pinion, GB, Motor           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Volume         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1024 cc         2139 cc           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit         Hydraulic Hose SAE J517 100R17         Copper 75°C           -6 3000 PSI 207 bar ½ Bend Radius         3/0 AWG Assume 24 V system           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit Bend Radius         2-1/2" 65 mm         8X OD 5.04" 128 mm                                                                                                                                                                   |                               | Not applicable                      | Gearbox                    |
| Volume & Weight         -         1,104 cc, 3 kg           Cylinder         Rack & Pinion, GB, Motor           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Weight         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1024 cc         2139 cc           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit         Hydraulic Hose SAE J517 100R17         Copper 75°C           -6 3000 PSI 207 bar ½ Bend Radius         3/0 AWG Assume 24 V system           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit Bend Radius         2-1/2" 65 mm         8X OD 5.04" 128 mm <td>Туре</td> <td>-</td> <td>Inline Planetary 10:1 97%</td> | Туре                          | -                                   | Inline Planetary 10:1 97%  |
| Cylinder         Rack & Pinion, GB, Motor           Total Size         1853 cc         4,206 cc           Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Weight         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1024 cc         2139 cc           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Veight (dry)         2.5 kg 5.51 lbs. (Estimated)         3/0 AWG Assume 24 V system           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit Bend Radius         2-1/2" 65 mm         8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                      |                               | -                                   |                            |
| Total Weight         5 kg (estimated)         16.3 kg           Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Weight         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1024 cc         2139 cc           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit         Hydraulic Hose SAE J517 100R17         Copper 75°C           -6 3000 PSI 207 bar ½ Bend Radius         3/0 AWG Assume 24 V system           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit Bend Radius         2-1/2" 65 mm         8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                 |                               | Cylinder                            | Rack & Pinion, GB, Motor   |
| Power Density         3.81/1853 = 2.056E-3 kW/cc         3.81/4206 = 0.906E-3 kW/cc           Volume Ratio         2.3 X more Power Dense by Volume         1.0           Power Density         3.81/5 = 0.762 kW/kg         3.81/16.3 = 0.234 kW/kg           Weight Ratio         3.3 X more Power Dense by Weight         1.0           Control         Control Valve         Motor Controller           Supplier         Proprietary         Motor Controller           Volume         1024 cc         2139 cc           Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit         Hydraulic Hose SAE J517 100R17         Copper 75°C           -6 3000 PSI 207 bar ½ Bend Radius         3/0 AWG Assume 24 V system           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit Bend Radius         2-1/2" 65 mm         8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Size                    | 1853 cc                             | 4,206 cc                   |
| Volume Ratio2.3 X more Power Dense by Volume1.0Power Density $3.81/5 = 0.762 \text{ kW/kg}$ $3.81/16.3 = 0.234 \text{ kW/kg}$ Weight Ratio $3.3 X$ more Power Dense by Weight $1.0$ ControlControl ValveMotor ControllerSupplierProprietaryMotor ControllerVolume $1024 \text{ cc}$ $2139 \text{ cc}$ Weight (dry) $2.5 \text{ kg} 5.51 \text{ lbs.}$ (Estimated) $2.3 \text{ kg} 5 \text{ lbs.}$ Hydraulic Hose SAE J517 100R17Copper 75°C-6 3000 PSI 207 bar ½ Bend Radius $3/0 \text{ AWG Assume 24 V system}$ Conduit OD $\emptyset 0.68" \ Ø17 \text{ mm}$ $\emptyset 0.630" \ Ø16.0 \text{mm}$ Conduit Bend Radius $2-1/2" \ 65 \text{ mm}$ $8X \text{ OD } 5.04" \ 128 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Weight                  | 5 kg (estimated)                    | 16.3 kg                    |
| Power Density3.81/5 = 0.762 kW/kg3.81/16.3 = 0.234 kW/kgWeight Ratio3.3 X more Power Dense by Weight1.0ControlControl ValveMotor ControllerSupplierProprietaryMotor ControllerVolume1024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.ConduitHydraulic Hose SAE J517 100R17-6 3000 PSI 207 bar ½ Bend Radius3/0 AWG Assume 24 V systemConduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power Density                 | 3.81/1853 = 2.056E-3 kW/cc          | 3.81/4206 = 0.906E-3 kW/cc |
| Weight Ratio3.3 X more Power Dense by Weight1.0ControlControl ValveMotor ControllerSupplierProprietaryMotor ControllerVolume1024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.ConduitHydraulic Hose SAE J517 100R17-6 3000 PSI 207 bar ½ Bend Radius3/0 AWG Assume 24 V systemConduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volume Ratio                  | 2.3 X more Power Dense by Volume    | 1.0                        |
| ControlControl ValveMotor ControllerSupplierProprietaryMotor ControllerVolume1024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.ConduitHydraulic Hose SAE J517 100R17Copper 75°C-6 3000 PSI 207 bar ½ Bend Radius3/0 AWG Assume 24 V systemConduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power Density                 | 3.81/5 = 0.762 kW/kg                | 3.81/16.3 = 0.234 kW/kg    |
| SupplierProprietaryMotor ControllerVolume1024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.ConduitHydraulic Hose SAE J517 100R17Copper 75°C-6 3000 PSI 207 bar ½ Bend Radius3/0 AWG Assume 24 V systemConduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weight Ratio                  | 3.3 X more Power Dense by Weight    | 1.0                        |
| Volume1024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.ConduitHydraulic Hose SAE J517 100R17Copper 75°C-6 3000 PSI 207 bar ½ Bend Radius3/0 AWG Assume 24 V systemConduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control                       | Control Valve                       | Motor Controller           |
| Volume1024 cc2139 ccWeight (dry)2.5 kg 5.51 lbs. (Estimated)2.3 kg 5 lbs.ConduitHydraulic Hose SAE J517 100R17Copper 75°C-6 3000 PSI 207 bar ½ Bend Radius3/0 AWG Assume 24 V systemConduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Supplier                      | Proprietary                         | Motor Controller           |
| Weight (dry)         2.5 kg 5.51 lbs. (Estimated)         2.3 kg 5 lbs.           Conduit         Conduit           Hydraulic Hose SAE J517 100R17         Copper 75°C           -6 3000 PSI 207 bar ½ Bend Radius         3/0 AWG Assume 24 V system           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit Bend Radius         2-1/2" 65 mm         8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | · ·                                 | 2139 сс                    |
| Hydraulic Hose SAE J517 100R17<br>-6 3000 PSI 207 bar ½ Bend RadiusCopper 75°C<br>3/0 AWG Assume 24 V systemConduit ODØ0.68" Ø17 mmØ0.630" Ø16.0mmConduit Bend Radius2-1/2" 65 mm8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weight (dry)                  | 2.5 kg 5.51 lbs. (Estimated)        | 2.3 kg 5 lbs.              |
| -6 3000 PSI 207 bar ½ Bend Radius         3/0 AWG Assume 24 V system           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit Bend Radius         2-1/2" 65 mm         8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                     | -                          |
| -6 3000 PSI 207 bar ½ Bend Radius         3/0 AWG Assume 24 V system           Conduit OD         Ø0.68" Ø17 mm         Ø0.630" Ø16.0mm           Conduit Bend Radius         2-1/2" 65 mm         8X OD 5.04" 128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Hydraulic Hose SAE J517 100R17      | Copper 75°C                |
| Conduit Bend Radius         2-1/2"         65 mm         8X OD         5.04"         128 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                     | 3/0 AWG Assume 24 V system |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conduit OD                    | Ø0.68″Ø17 mm                        | Ø0.630" Ø16.0mm            |
| Conduit Weight 0.23 lbs./ft. 0.34 kg/m 0.575 lbs./ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conduit Bend Radius           | 2-1/2" 65 mm                        | 8X OD 5.04" 128 mm         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conduit Weight                | 0.23 lbs./ft. 0.34 kg/m             | 0.575 lbs./ft.             |

| APPENDIX D | AC COMPRESSOR |
|------------|---------------|
|------------|---------------|

| Speed                 | AC Compressor<br>Estimated 5000 RPM          |                              |
|-----------------------|----------------------------------------------|------------------------------|
| Speed                 |                                              |                              |
| Torque                | Estimated 20 Nm                              |                              |
| Power                 | 10.5 kW 14 hp<br>Hydraulic                   | Electric                     |
|                       | Motor                                        | Motor                        |
| Tupo                  |                                              |                              |
| Type                  | Motor, Fixed Displacement, Bent Axis         | Permanent Magnet (PMAC)      |
| Press/Voltage Capable | 350 bar 4351 PSI                             | 400 VDC                      |
| Flow/Current Capable  | 61 LPM 16.1 GPM                              | 48.9 Arms Continuous         |
| Cont. Torque Capable  | 31.8 Nm (350 bar 95% Mech Eff)               | 27.5 Nm                      |
| Cont Shaft PW Capable | 32.1 kW (350 bar 95% Mech Eff)               | 19.3 kW                      |
| Shaft Power Operating | 10.47 kW (3198 PSI at 8.34 GPM)              | 10.47 kW (5000 RPM at 20)    |
| Input Power Operating | 11.6 kW                                      | 11.02 kW                     |
| Flow/Current - Op     | 31.6 LPM 8.34 GPM (5000 RPM, 95% Vol<br>Eff) | 31.5 Arms (95% Eff)          |
| Heat Generation -Op   | 1.13 kW (10.47 kW at 90.3% Overall Eff)      | 0.55 kW (95% Motor)          |
| Volume                | 827 cc                                       | 6,816 cc                     |
| Weight (dry)          | 6.5 kg                                       | 18.5 kg                      |
| Power Density         | 32.1/827 = 38.8E-3 kW/cc                     | 19.3/6816 = 2.83E-3 kW/cc    |
| Volume Ratio          | 13.7 X more Power Dense by Volume            | 1.0                          |
| Power Density         | 32.1/6.5 = 4.94 kW/kg                        | 19.3/18.5 = 1.04 kW/kg       |
| Weight Ratio          | 4.7 X more Power Dense by Weight             | 1.0                          |
|                       |                                              | Alternate Motor              |
| Туре                  | -                                            | Axial Flux                   |
| Size                  | -                                            | AXM 125 4 Turn motor         |
| Nominal Speed         | -                                            | 5000 RPM                     |
| Press/Voltage Capable | -                                            | 350 VDC                      |
| Flow/Current Capable  | -                                            | 145 Arms Continuous          |
| Cont. Torque Capable  | -                                            | 100 Nm                       |
| Cont Shaft PW Capable | -                                            | 52.4 kW (5000 RPM, 100 Nm)   |
| Volume                | -                                            | 6516 cc                      |
| Weight                | -                                            | 22 kg                        |
| Power Density         | -                                            | 52.4/6516 = 8.04E-3 kW/cc    |
| Power Density         | -                                            | 52.4/22 = 2.38 kW/kg         |
|                       | Hydraulic Source                             | Electric Source              |
| Туре                  | Pump, Axial, Piston, Variable                | Integrated Starter Generator |
| Press/Voltage Capable | 250 bar 3600 PSI                             | -                            |
| Flow/Current Capable  | 84 LPM 22.2 GPM (100%)                       | -                            |
| Cont. Power Capable   | 33.3 kW (250 bar, 90.3% Overall Eff)         | 145 kW                       |
| Flow/Current -Op      | 31.58 LPM 8.34 GPM (5000 RPM, 95%            | 31.5 Arms (95% Eff)          |
| ,,                    | Vol Eff)                                     |                              |
| Output Power - Op     | 11.61 kW (3198 PSI at 8.34 GPM)              | 11.02 kW (Motor Input PW)    |
| Input Power - Op      | 12.86 kW (3198 PSI at 8.34 GPM)              | 11.60 kW (95% Eff)           |
|                       |                                              |                              |
| Heat Generation - Op  | 1.25 kW (90.3% Overall Eff)                  | 0.58 kW (95% Overall Eff)    |

| Volume                   | 6,061 cc                            | 43,852 cc                  |
|--------------------------|-------------------------------------|----------------------------|
| Weight (dry)             | 15 kg (no through drive)            | 119 kg                     |
| Power Density            | 33.3/6061 = 5.49E-3 kW/cc           | 145/43852 = 3.31E-3 kW/cc  |
| Volume Ratio             | 1.7 X more Power Dense by Volume    | 1.0                        |
| Power Density            | 33.3/15 = 2.22 kW/kg                | 145/119 = 1.22 kW/kg       |
| Weight Ratio             | 1.8 X more Power Dense by Weight    | 1.0                        |
| -                        | Source & Motor                      | Conduit                    |
|                          | SAE -12 Ports                       | 35 amps Continuous         |
| Source Conduit           | Hydraulic Hose SAE J517 100R19      | Copper 75°C                |
|                          | -12 4000 PSI 276 bar                | 10 AWG                     |
| Source Conduit OD        | Ø1.09″Ø28 mm                        | Ø0.176″Ø4.5mm              |
| Source Conduit           | 4-3/4" 120 mm                       | 8X OD                      |
| Bend Radius              |                                     | 1.4″ 36 mm                 |
| Source Conduit Weight    | 0.58 lbs./ft. 0.86 kg/m             | 0.038 lbs./ft.             |
|                          | Additional It                       | ems                        |
| ltem                     | Filter                              | Inverter                   |
| Filter & Valve /Inverter | Required. External to pump          | Inverter                   |
| Volume                   | 14,870 cc                           | 24,442 сс                  |
| Weight                   | 25.4 kg                             | 25 kg                      |
| Heat Generation          | 0.01 kW (2 PSI at 8.34 GPM)         | 0.58 kW (95% Overall Eff)  |
|                          | Unloading Valve                     | None                       |
| Heat Generation          | 0.13 kW (35 PSI at 8.34 GPM)        | -                          |
| Volume                   | 1,149 cc                            | -                          |
| Weight                   | 0.39 kg                             | -                          |
|                          | No additional cooling pump required | Electric Cooling Pump      |
| Cooling/Charge/Boost     | -                                   | 50/50 water-glycol         |
| Charge/Cooling Pump      | -                                   | 10 GPM @ 25 PSI 4,256 cc   |
|                          |                                     | 6.7 lbs 3.03 kg            |
| Pump Controls            | Included in main pump               | Included on cooling pump   |
|                          | Reservoir & F                       |                            |
| Fluid                    | Hydraulic Oil MIL-PRF-46170         | 50/50 water-glycol         |
| Reservoir/Cooling        | 4 gal 15,142 cc                     | 1 gal 3,785 cc             |
| Volume Ratio             | 4.0 X more Volume                   | 1                          |
| Density of fluid         | 859 kg/m <sup>3</sup>               | <br>1050 kg/m <sup>3</sup> |
| Weight of fluid          | 13.0 kg                             | 4.0 kg                     |
| Weight Ratio             | 3.3 X more Weight                   |                            |
|                          | Heat Generation (Ope                | erating Load)              |
|                          |                                     | Electric                   |
| Motor                    | 1.13 kW                             | 0.55 kW                    |
| Pump/ISG                 | 1.25 kW                             | 0.58 kW                    |
| Filter/Inverter          | 0.01 kW                             | 0.58 kW                    |
| Unloading Valve          | 0.13 kW                             | -                          |
| Total                    | 2.52 kW                             | 1.71 kW                    |
| Heat Ratio               | 1.5 X More Heat Generated           | 1.71 KW                    |
| Πεαι ΝάιΙΟ               | 1.5 A WOLE HEAL GENELALEU           | L1                         |

| <b>APPENDIX E – VENTILATION FAN</b> |                                     |                             |
|-------------------------------------|-------------------------------------|-----------------------------|
|                                     | Ventilation Fan                     |                             |
| Speed                               | Estimated 5000 RPM                  |                             |
| Torque                              | Estimated 1.91 Nm                   |                             |
| Power                               | 1.00 kW                             |                             |
| Item                                | No gearbox                          |                             |
|                                     | Hydraulic                           | Electric                    |
|                                     | Hydraulic Motor                     | Electric Motor              |
| Туре                                | Gear Motor                          | Interior Permanent Magnet   |
| Nominal Speed                       | 5000 RPM                            | 5000 RPM                    |
| Press/Voltage Capable               | 240 bar 3481 PSI                    | 24 V to 96 V                |
| Flow/Current Capable                | 14.4 lpm 3.8 GPM                    | 200 Arms                    |
| Shaft Torque Capable                | 8.0 Nm 5.9 ft-lbs (75% Mech Eff)    | 2.2 Nm                      |
| Shaft Power Capable                 | 4.20 kW (240 bar, 71.3% Eff)        | 1.19 KW                     |
| Speed - Operating                   | 5000 RPM                            | 5000 RPM                    |
| Press/Voltage - Op                  | 57.1 bar 829 PSI under load         | 24 V                        |
| Flow/Current - Op                   | 14.74 LPM 3.9 GPM (95% Vol Eff)     | 52.1 Amps (80% Motor Eff)   |
| Torque - Operating                  | 1.91 Nm (57.1 bar 75% Mech Eff)     | 1.91 Nm                     |
| Shaft Power - Op                    | 1.00 kW (5000 RPM, 1.91 Nm)         | 1.00 kW (5000 RPM, 1.91 Nm) |
| Input Power - Op                    | 1.40 kW (71.3 % Overall Eff)        | 1.25 kW (24 V * 52.1 amps)  |
| Heat Generation - Op                | 0.39 kW (71.3% Overall Eff)         | 0.25 kW (80% Eff)           |
| Volume                              | 497 cc                              | 2295 cc                     |
| Weight (dry)                        | 2.2 kg (Estimated)                  | 7 kg                        |
| Power Density                       | 4.2/497 = 8.45E-3 kW/cc             | 1.2/2295 = 0.523E-3 kW/cc   |
| Volume Ratio                        | 16 X more Power Dense by Volume     | 1.0                         |
| Power Density                       | 4.2/2.2 = 1.91 kW/kg                | 1.2/7 = 0.171 kW/kg         |
| Weight Ratio                        | 11.2 X more Power Dense by Weight   | 1.0                         |
|                                     | Hydraulic Source                    | Electric Source             |
| Source                              | Use same turret pump.               | Use turret electrical power |
|                                     | Source & Motor Conduit              |                             |
| Conduit                             | Hydraulic Hose SAE J517 100R17      | Copper 75°C                 |
|                                     | -6 3000 PSI 207 bar 1/2 Bend Radius | 8 AWG                       |
|                                     |                                     | Assume 24 V system          |
|                                     |                                     | 52 amp load 1.25 kW         |
| Conduit OD                          | Ø0.68"Ø17 mm                        | Ø0.236"Ø6.0mm               |
| Conduit Bend Radius                 | 2-1/2"65 mm                         | 8X OD 1.9" 48 mm            |
| Conduit Weight                      | 0.23 lbs./ft. 0.34 kg/m             | 0.05 lbs./ft.               |
|                                     | Additional Items                    |                             |
| Item                                | Valve                               | Controller                  |
| Control                             | Control valve external to motor     | Motor Controller            |
| Volume                              | 1,537 cc                            | 2139 сс                     |
| Volume Ratio                        | 72% 1.4 X Less Volume               | 100%                        |
| Density (Volume)                    | 20%                                 | 100%                        |
| Weight (dry)                        | 1 kg 2.2 lbs.                       | 2.3 kg 5 lbs.               |

# **APPENDIX F – COOLING FAN**

|                          | AITENDIAT – COOLING FAN           |                             |
|--------------------------|-----------------------------------|-----------------------------|
|                          | Cooling Fan                       |                             |
| Power                    | 80 kW 107 hp                      |                             |
| Speed                    | Estimated 4200 RPM                |                             |
| Torque                   | Estimated 182 Nm                  |                             |
| Item                     | No gearbox                        |                             |
|                          | Hydraulic                         | Electric                    |
|                          | Hydraulic Motor                   | Electric Motor              |
| Туре                     | Axial, Piston, Bent Axis          | Axial Flux                  |
| Nominal Speed            | 6300 RPM                          | 4200 RPM                    |
| Rated Pressure/voltage   | 400 bar 5800 PSI                  | 480 VDC                     |
| Peak Pressure/voltage    | 450 bar 6527 PSI                  | -                           |
| Rated Flow/Current       | 202 LPM 53.3 GPM                  | 270 Arms Continuous         |
| Rated Torque             | 204 Nm (400 bar 100% Mech Eff)    | 290 Nm                      |
| Rated Power              | 134.41 kW (400 bar 6300 RPM 100%) | 128 kW (100% Eff)           |
| Flow/Current - Operating | 141.5 LPM 37.4 GPM                | 175.5 Arms                  |
|                          | (4200 RPM, 95% Vol Eff)           | (4200 RPM, 182 Nm, 95% Eff) |
| Press/Voltage - Op       | 376.0 bar 5456 PSI (95% Mech Eff) | 480 VDC                     |
| Torque - Operating       | 182.0 Nm (95% Mech Eff)           | 182.0 Nm                    |
| Shaft Power - Operating  | 80.05 kW (4200 RPM, 182 Nm)       | 80.05 kW (4200, 182 Nm)     |
| Input Power              | 88.70 kW                          | 84.26 kW                    |
| Heat Generation - Op     | 8.65 kW (90.3% Overall Eff)       | 4.21 kW (95% Overall Eff)   |
| Volume                   | 3,296 сс                          | 16,338 cc                   |
| Weight (dry)             | 10.7 kg                           | 57.5 kg                     |
| Power Density            | 134.41/3296 = 40.8E-3 kW/cc       | 128/16338 = 7.83E-3 kW/cc   |
| Volume Ratio             | 5.2 X more Power Dense by Volume  | 1.0                         |
| Power Density            | 134.41/10.7 = 12.6 kW/kg          | 128/57.5 = 2.23 kW/kg       |
| Weight Ratio             | 5.7 X more Power Dense by Weight  | 1.0                         |
|                          | Hydraulic Source                  | Electric Source             |
| Туре                     | Pump, Axial, Piston, Variable     | Integrated Generator        |
| Nominal Speed            | 3600 RPM                          |                             |
| Rated Pressure/Voltage   | 400 bar 5800 PSI Nominal          |                             |
| Rated Flow/Current       | 202 lpm 53.4 GPM (100%)           |                             |
| Rated Torque             | 356.5 Nm                          |                             |
| Rated Power              | 134.4 kW (400 bar, 3600 RPM, Max) | 145 kW                      |
| Flow/Current - Operating | 141.5 LPM 37.4 GPM                |                             |
|                          | (41.37cc 74% disp. 95% Vol Eff)   |                             |
| Pressure/Voltage - Op    | 376 bar 5456 PSI                  |                             |
| Torque - Operating       | 260.7 Nm (95% Mech Eff)           |                             |
| Input Power - Operating  | 98.30 kW                          | 88.69 kW (95% Eff)          |
| Output Power - Op        | 88.72 kW                          | 84.26 kW (Motor Input PW)   |
| Heat Generation - Op     | 9.58 kW                           | 4.43 kW (95% Eff)           |
| Volume                   | 15,492 cc                         | 43,852 cc                   |
| Weight (dry)             | 38 kg                             | 119 kg                      |
| Power Density            | 134.4/15492 = 8.68E-3 kW/cc       | 145/43852 = 3.31E-3 kW/cc   |
| Weight (dry)             | 38 kg                             | 119 kg                      |

| Filter/Inverter<br><b>Total</b><br>Heat Ratio | 0.01 kW(3 PSID @ 11 GPM)<br><b>19.98 kW</b>   | 4.43 kW (95% Eff)<br>13.07 kW               |  |
|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|--|
|                                               | · · · · ·                                     | 4.43 kW (95% Eff)                           |  |
|                                               |                                               |                                             |  |
| Charge & Flushing                             | 1.74 kW                                       | -                                           |  |
| Source                                        | 9.58 kW                                       | 4.43 kW                                     |  |
| Motor                                         | 8.65 kW                                       | 4.21 kW                                     |  |
|                                               | Hydraulic                                     | Electric                                    |  |
|                                               | Heat Generation (Ope                          | erating Load)                               |  |
| Conduit Weight                                | 0.29 lbs./ft 0.43 kg/m                        | 0.18 lbs./ft 0.27 kg/m                      |  |
| Conduit Bend Radius                           | 3.5″90 mm                                     | 4″ 100 mm                                   |  |
| Conduit OD                                    | Ø0.82"Ø21 mm                                  | Ø0.75"Ø19 mm                                |  |
|                                               | -8 2500 PSI 172 bar ½ Bend Radius             | -8 400 PSI 25.6 bar                         |  |
| Conduit                                       | Hydraulic Hose SAE J517 100R1AT               | Hose SAE J517 100R6                         |  |
| Coolant/Flushing/Charge                       | Hydraulic Fluid                               | 50/50 Water-glycol                          |  |
| Weight Ratio                                  | 3.3 X more Weight                             | 1                                           |  |
| Weight of fluid                               | 13.0 kg                                       | 4.0 kg                                      |  |
| Density of fluid                              | 859 kg/m <sup>3</sup>                         | 1050 kg/m <sup>3</sup>                      |  |
| Volume Ratio                                  | 4.0 X more Volume                             | 1                                           |  |
| Reservoir/Cooling Tank                        | 4 gal 15,142 cc                               | 1 gal 3,785 cc                              |  |
| Fluid                                         | Hydraulic Oil MIL-PRF-46170                   | 50/50 water-glycol                          |  |
| Fump controis                                 | Reservoir & F                                 |                                             |  |
| Pump Controls                                 | Included in main pump                         | Included on cooling pump                    |  |
| Charge/Cooling Pump                           | Included in main pump                         | 4,256 cc 6.7 lbs 3.03 kg                    |  |
| Charge/Cooling Pump                           |                                               | 10 GPM @ 25 PSI                             |  |
| Cooling/Charge/Boost                          | 25 bar 365 PSI                                | Electric Cooling Pump<br>50/50 water-glycol |  |
| Weight                                        | 1.4 kg<br>No additional cooling pump required | 25 kg                                       |  |
|                                               | 2,005 cc                                      | 24,442 cc                                   |  |
| Filter/Inverter<br>Volume                     | External to pump                              | Inverter                                    |  |
| ltem                                          |                                               | Controller                                  |  |
| Controls                                      | Pump controls integrated in pump<br>Filter    | Integrated in Inverter                      |  |
| Anti-Cavitation Valve                         | Integrated in motor                           | Not applicable                              |  |
| Flushing Valve                                | Integrated in motor                           | Not applicable                              |  |
| Item                                          | Valve                                         | Controller                                  |  |
|                                               | Additional It                                 |                                             |  |
| Working Conduit Weight                        | 1.07 lbs./ft. 1.59 kg/m                       | 0.462 lbs./ft.                              |  |
| Conduit Bend Radius                           | 8″ 200 mm                                     | 8X OD 4.62" 117.6 mm                        |  |
| Working Conduit OD                            | Ø1.26″Ø32 mm                                  | Ø0.578"Ø14.7mm                              |  |
|                                               | -12 6000 PSI 414 bar                          | 174 Arms Operating 2/0                      |  |
| Working Conduit                               | Hydraulic Hose SAE J517 100R15                | Copper 75°C                                 |  |
|                                               | Source & Motor Conduit                        |                                             |  |
| Weight Ratio                                  | 2.9 X more Power Dense by Weight              | 1.0                                         |  |
| ,                                             | 154.4/56 – 5.54 KVV/Kg                        | 145/119 – 1.22 KVV/Kg                       |  |
| Power Density                                 | 134.4/38 = 3.54 kW/kg                         | 145/119 = 1.22 kW/kg                        |  |